

WASHU EPIGENOME BROWSER

2025 Workshop

epigenomegateway.wustl.edu

HumPOG
 WANG LAB

BROWSER MAP

Key

1 = Go to this page number to learn about the browser feature

TABLE OF CONTENTS

BROWSER FEATURES

BROWSER TRACKS

DATA MANAGEMENT

APPS, FUNCTIONS & SETTINGS

1. Navigation
2. Tracks
3. Apps
4. Metadata Heatmap

5. Genes
6. Numerical Track
7. Matplot
8. MethylC Track
9. Genome Comparison
10. Long-Range Interaction

11. Local Tracks and Datahub
12. Datahub
13. Screenshot
14. Session

15. Region Set View
16. Gene Plot
17. Scatter Plot
18. Fetch Sequence
19. Track Operation Tools
20. Undo/Redo
21. 3D Genome Visualization
22. Custom Genome
23. Browser Settings
24. Embed the Browser

Click to zoom in.

Click to zoom out.

Drag on ruler to zoom in.

Chromosome ideogram.

Chromosome ideogram of region.

Coordinate ruler.

Search genes, variants, or regions...

Highlight search

Gene search

Gene symbol

SNP search

SNP id Go

Region search (current region is chr7:27009264-27329632) Copy

Coordinate Go

Enter coordinates to jump to a region.

In the form of "chr1:345-678", fields can be joined by space/tab/colon/hyphen

Enter a gene name to jump to a gene.

Multiple gene models may be shown for a gene. Choose one gene model to jump to its location.

Gene search

HOXA1

refGene chr7:27092994-27096000

refGene chr7:27092994-27096000

gencodeV39 chr7:27093312-27095996

gencodeV39 chr7:27092992-27096000

MANE_selec t_1.0 chr7:27092992-27096000

MANE_selec t_1.4 chr7:27092992-27096000

gencodeV47 chr7:27092992-27096000

gencodeV47 chr7:27093312-27095996

Enter the reference SNP cluster ID (rsID) to jump to a specific SNP.

At fine resolution, the chromosome ideogram is replaced by the DNA sequence.

Ruler

C T C T G C A A T C C A G T T T C C
G C T A N
27160490 27160500

A browser **track** is a visualization of a dataset along a genome. Examples of browser tracks include gene annotation tracks and RNA-seq expression tracks.

Tracks

Click to manage browser tracks.

Annotation Tracks
View and manage genomic annotation tracks like genes, transcripts, and regulatory elements

Public Data Hubs
Connect to public genomic data repositories and track collections

Track Facet Table
Organize and filter tracks using customizable categories and metadata

Remote Tracks
Access and manage tracks from remote servers and databases

Local Tracks
Manage tracks loaded from your local files

Local Text Tracks

Click to submit a remote track or hub.

Remote Tracks

Add Back

Add Tracks Add Data Hubs

1 Track Type

bigWig - numerical data

2 Track File URL

3 Track Label

4 Configure Track

Submit

Click to submit a local track or hub.

Local Tracks

Add Back Local Tracks

Add Local Track Add Local Hub

1 Track Type

bigWig - numerical data

2 Track File

3 Assembly
hg38

4 Configure Track

Submit

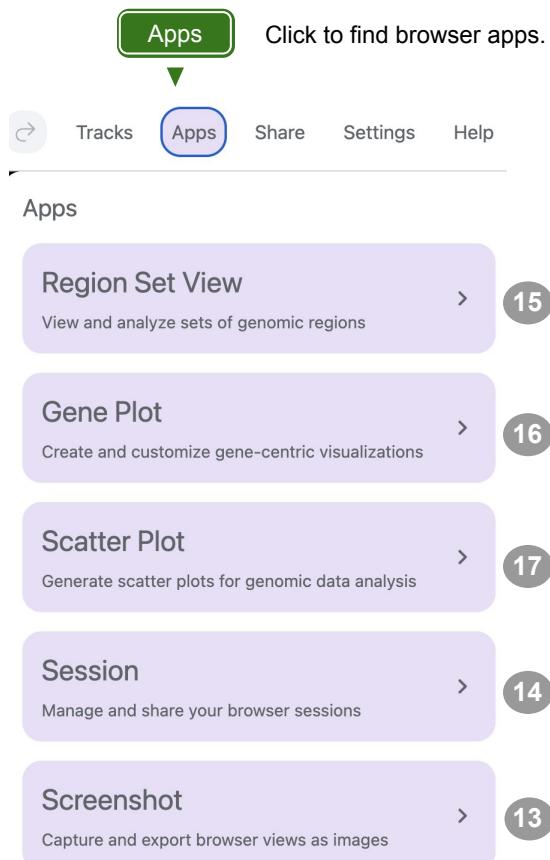
Access annotation tracks such as genes.

Annotation Tracks

Search...	
Ruler	<input checked="" type="checkbox"/>
Genes	
RefSeq genes	<input checked="" type="checkbox"/>
MANE selection v1.4	<input checked="" type="checkbox"/>
MANE selection v1.0	<input type="checkbox"/>
GENCODE V47 genes	<input checked="" type="checkbox"/>
GENCODE V39 genes	<input type="checkbox"/>
Transcription Factor	
JASPAR Transcription Factors 2022	<input type="checkbox"/>
Variation	
SNVs from Ensembl	<input type="checkbox"/>
RepeatMasker	
RepeatMasker	<input checked="" type="checkbox"/>

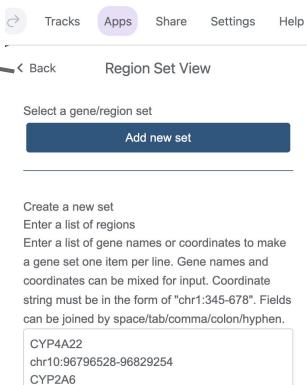
Show available public track hubs to load tracks from projects including Roadmap Epigenomics Project and ENCODE.

Public Data Hubs

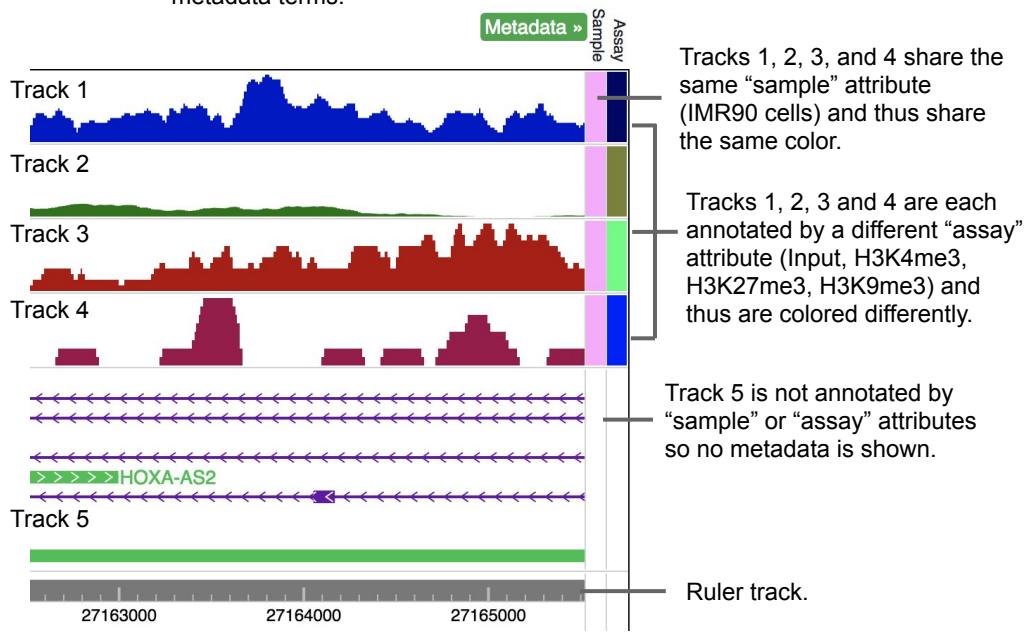

Search hubs...	
Human Pangenome Reference Consortium (HPRC)	<input type="checkbox"/>
HPRC long read methylation data (12 tracks)	<input type="checkbox"/>
Reference human epigenomes from Roadmap Epigenomics Consortium	
All Chromatin status tracks (352 tracks)	<input type="checkbox"/>
Roadmap ChIP-seq datasets (12494 tracks)	<input type="checkbox"/>
Roadmap RNA-seq, WGBS etc. datasets (5586 tracks)	<input type="checkbox"/>
Impact of Genomic Variation on Function (IGVF)	

Track Facet Table

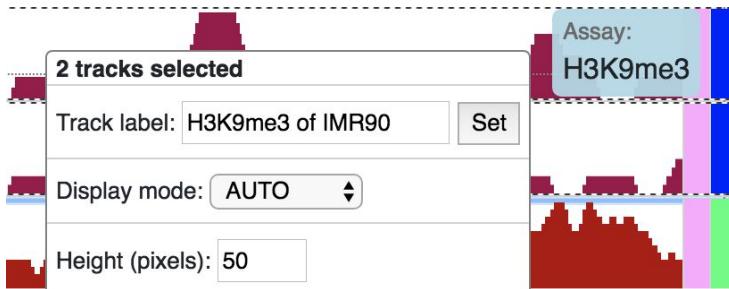
Row: Assay		Public		Custom	
Sample	0/8	0/2			
Cancer Cells					
Placenta					
Fetal Cells/Tissues					
Fetal Testes					
Fetal Spinal Cord					
Fetal Spine					


The numbers indicate the tracks available for each sample+assay combination (dark) and the tracks that are currently shown in the browser (green). Click a table cell to show a list of available tracks for a sample+assay combination.

A browser **app** is a self-contained program for executing a specific task. Examples of browser apps include uploading files and taking screenshots.



Apps appear as a side panel on the right side of the browser and are used in the context of browser visualization. You never have to leave the browser to use an app.

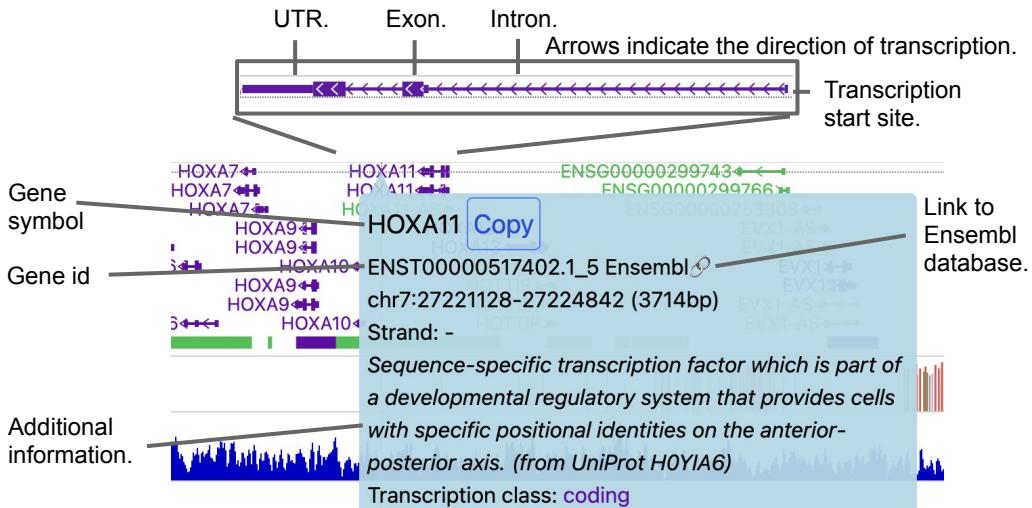

Close this app.

A metadata heatmap with two metadata terms.

Click the metadata bar to quickly select tracks annotated with the same metadata term.

Switch Metadata and add/remove interface.

Metadata »


Current terms

- Sample
- Assay

Suggested terms

- + Track type
- + Donor
- + Institution

Custom term

The human **Gencode V47 gene track** for **HOXA11** is shown above. The tooltip bubble displays information on the **HOXA11** gene.

< Back Annotation Tracks

genes

Genes

RefSeq genes

MANE selection v1.4

MANE selection v1.0

Gencode V47 genes

Gencode V39 genes

gencodeV47

Track label: **gencodeV47**

Display mode: **FULL**

Max rows (including overflow row): **10**

Primary color

Secondary color

Background color

Italicize text

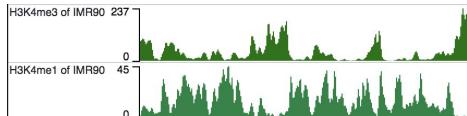
Hide item less than (pixels): **0.5**

Hide minimal items

Remove

[More information](#)

Right-click on the gene track (and any other tracks) for the **configuration menu**.

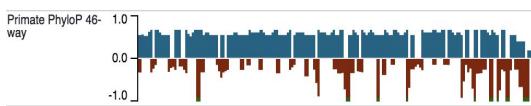

Display modes.

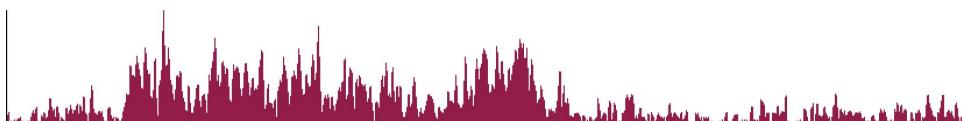
Configure the number of rows for displaying genes

Change colors etc.

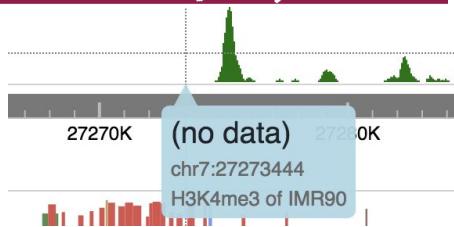
A **numerical track** displays a series of quantitative values along the genome as a highly customizable graph. When the track height is small, the track is shown as a heatmap, otherwise it is shown as a bar plot.

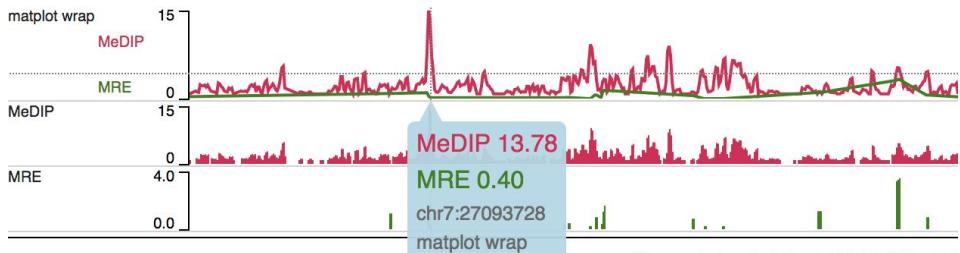
Bar plot (track height \geq 20 pixels)


Heatmap (track height $<$ 20 pixels)

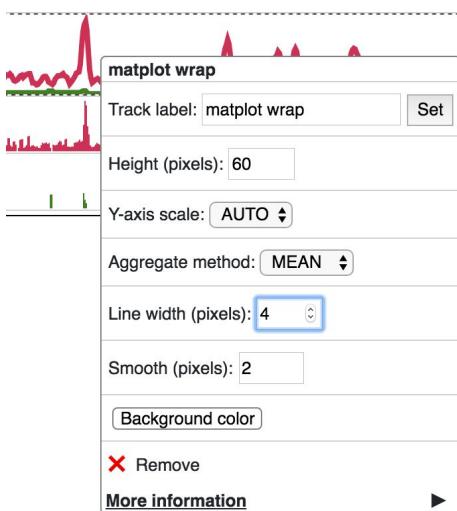
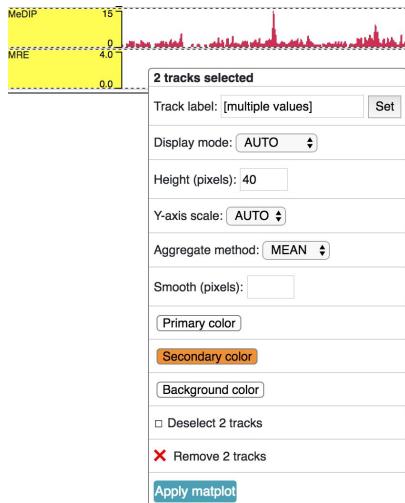

Positive and negative values are rendered using different colors.

The default y-axis scale is an automatic scale which can be changed into a fixed scale using the configuration menu. Bars with values beyond a set threshold are indicated with a different color on their peaks.


Bar plot shape can be smoothed using the configuration menu.

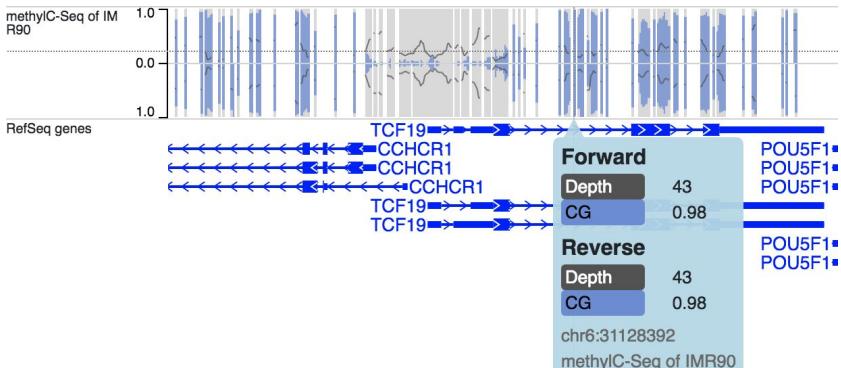

Smooth (pixels): 3

Missing values are labelled as “No data” on the tooltip for bedGraph format tracks (not applicable for bigWig format tracks).

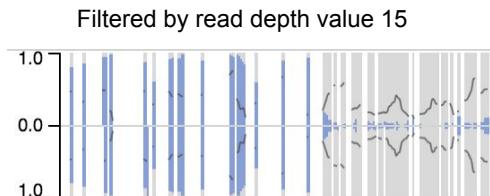
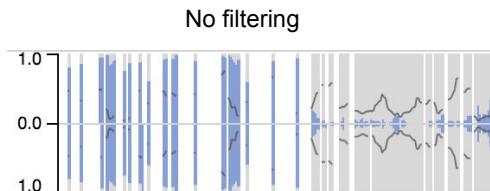



A **matplot** (also called a line plot) displays multiple numerical tracks on the same X and Y axes to easily compare datasets. Data is plotted as curves instead of bar plots.

Matplots can be created while browsing:


1. Hold shift and click on track names to select multiple numerical tracks. (Track names will be highlighted in yellow.)
2. Right-click on the selected tracks and select "Apply matplot."

Matplot track can be treated as regular tracks. Right Click for the configuration menu.



Browser Tracks: MethylIC Track

The **methylIC track**¹ is designed to display DNA methylation data from whole-genome bisulfite sequencing experiments. It distinguishes cytosine methylation levels (as bar plots) on separate strands and in different sequence contexts and integrates sequencing read depth (as curves) as a measure of confidence.

The color legend for a methylIC track can be viewed using its configuration menu. All colors are configurable by clicking on the color boxes.

To filter methylation data by read depth select the configuration menu, click "Filter by read depth," enter a threshold, and click "Apply."

methylIC-Seq of IMR90

Track label: methylIC-Seq of IMR90

Height (pixels): 40

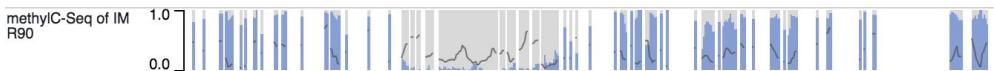
Combine strands

Context	Color	Background
CG	#648bd8	#d9d9d9
CHG	#ff944d	#ffe0cc
CHH	#ff00ff	#ffe5ff

Add other contexts by specifying them in a data hub.

Methylation value max: 1

Depth filter: 0


Read depth line color

Background color

Remove

[More information](#)

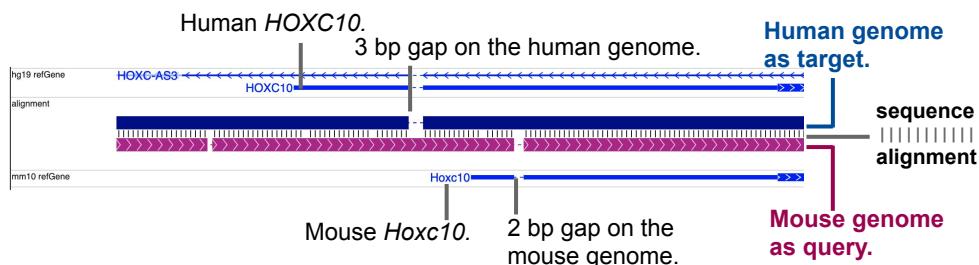
To combine the forward and reverse strands, in the configuration menu, select "Combine strands."

Browser Tracks: Genome Comparison

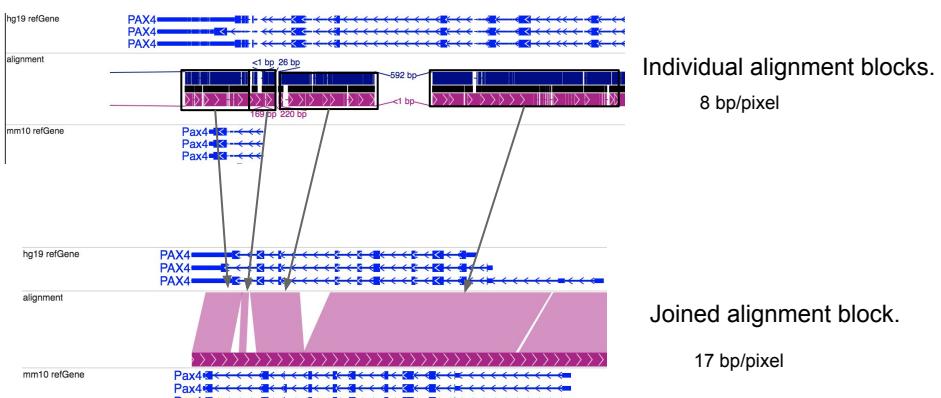
The **genome comparison track** visualizes pairwise alignments of two genomes allowing for comparison at fine (base pair) or large (megabase) scale. Alignment is unbiased with gaps in both the query and target genomes.

To add the genome comparison track, go to “Tracks” > “Annotation tracks” > “Genome Comparison.”

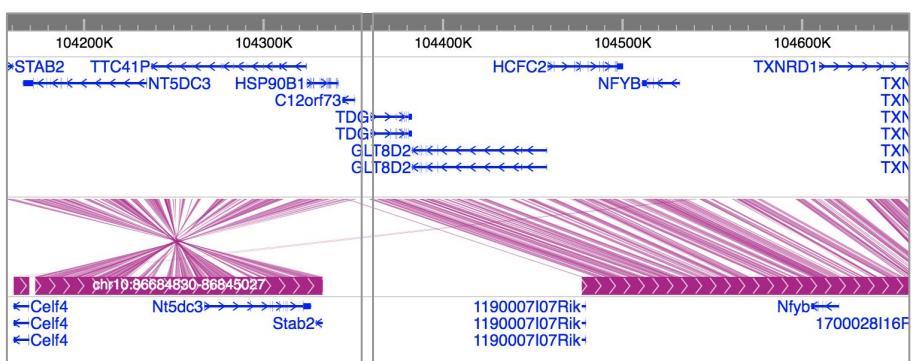
Many pre-built genome comparison tracks are available.


[◀ Back](#) Annotation Tracks

genome comparison

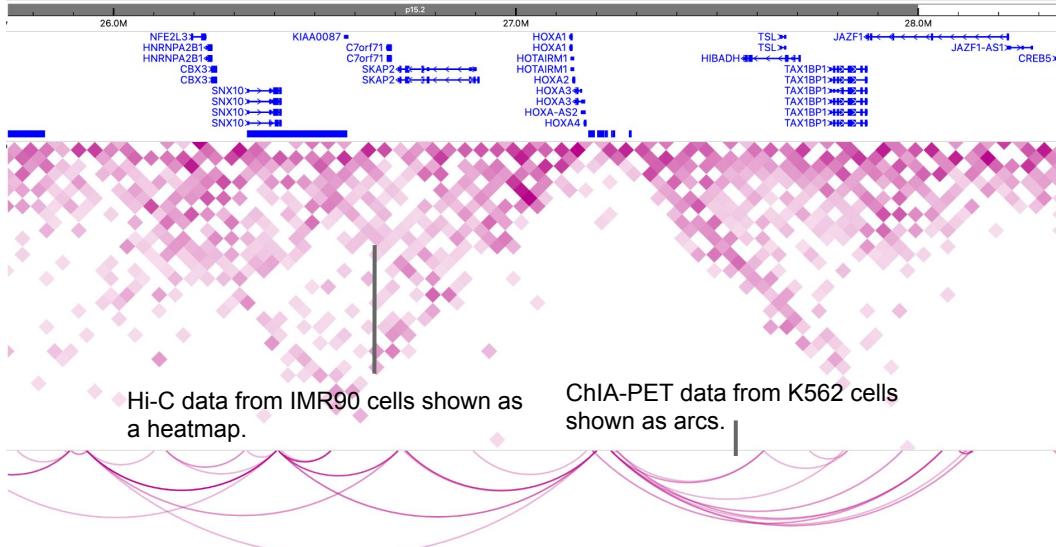

Genome Comparison

Query mouse mm10 to hg38 blastz


hg38 - chm13v2.0 minimap2

At 10 bp/pixel resolution, the browser will transition from individual alignment blocks to a joined alignment block.

Complex genome rearrangements can be visualized by observing synteny blocks.


Long-range chromatin interaction experiments can be accessed through public track hubs¹.

Long-range chromatin interaction experiments

Long-range chromatin interaction experiments (156 tracks)

+

Human *HOXA* gene cluster:

Highlights:

1. Supports pairwise chromatin interaction results from Hi-C, 5C, and ChIA-PET.
2. Multiple display modes: heatmaps and arcs.
3. Visualizes interactions from distant regions and different chromosomes.

UCSD IMR90 Hi-C (40kb HindIII combined)

Track label:

Display mode:

Height (pixels):

Score scale:

Score max:

Score min:

Max value filter:

Min value filter:

Data in current view (no expansion)

Both anchors in view window

Scale with height

Data Management: Local Tracks and Datahub

Track files from your local hard drive can be displayed directly on the browser and they can be organized into a local datahub too. Local tracks and datahubs are usually loaded faster than URL hosted tracks since network transfer is avoided.

Tracks

Annotation Tracks

View and manage genomic annotation tracks like genes, transcripts, and regulatory elements

Public Data Hubs

Connect to public genomic data repositories and track collections

Track Facet Table

Organize and filter tracks using customizable categories and metadata

Remote Tracks

Access and manage tracks from remote servers and databases

Local Tracks

Manage tracks loaded from your local files

Local Text Tracks

Local Tracks

Add Local Track

Local Tracks

Add Local Hub

1 Track Type

bigWig - numerical data

2 Track File

3 Assembly

hg38

4 Configure Track

Submit

Back

Add Local Track

1 Track Type

bigWig

2 Track File

Select Track File(s)

Choose Files No file chosen

Favorites

Box Sync

Dropbox

Box Sync

Dropbox

Box Sync

Dropbox

All My Files

iCloud Drive

Applications

Desktop

Documents

Downloads

Creative Cloud...

Devices

Remote Disc

Name

TW463_20-5-bonemarrow_MeDIP.bigWig

TW551_20-5-bonemarrow_MRE.CpG.bigWig

GSE28247_st3c

GSE28247_st3c.gz.tbi

GSE28247_st3c.gz

E01715.coreMarks.dense.gz.tbi

E01715.coreMarks.dense.gz

h1.liftedtohg19.gz

h1.liftedtohg19.gz.tbi

InteractExample3.inter.bb

ENCF9321WW.bigBed

2value.bg.gz.tbi

2value.bg.gz

Example upload of 2 local bigWig files

Choose a folder containing hub.config.json:

Choose File No file chosen

Or choose multiple files (including hub.config.json):

Choose Files No file chosen

Favorites

Box Sync

Dropbox

Box Sync

Dropbox

All My Files

iCloud Drive

Applications

Desktop

Documents

Downloads

Creative Cloud...

Devices

Options

Name

Date Modified

Size

Kind

hub.config.json

TW463_20-5-bonemarrow_MeDIP.bigWig

TW551_20-5-bonemarrow_MRE.CpG.bigWig

GSE28247_st3c

GSE28247_st3c.gz.tbi

GSE28247_st3c.gz

E01715.coreMarks.dense.gz.tbi

E01715.coreMarks.dense.gz

h1.liftedtohg19.gz

h1.liftedtohg19.gz.tbi

InteractExample3.inter.bb

ENCF9321WW.bigBed

2value.bg.gz.tbi

2value.bg.gz

Cancel

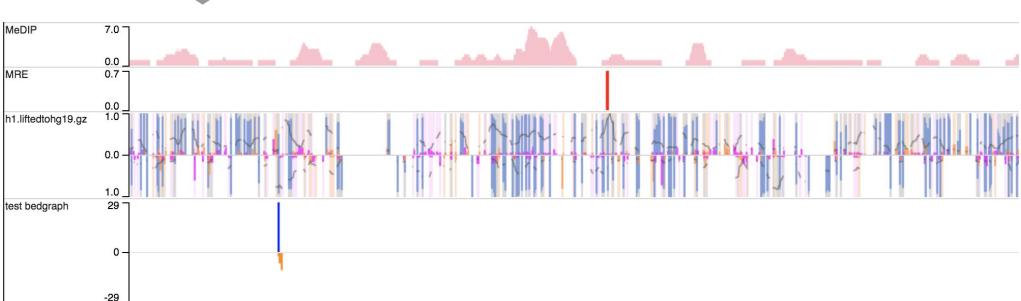
Open

refGene

gencodeM19Basic

Ruler

RepeatMasker


TW463_20-5-bonemarrow_MeDIP.bigWig

TW551_20-5-bonemarrow_MRE.CpG.bigWig

0.000 52418000 52419000 52420000 52421000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Example upload of a local datahub

A **datahub** is a collection of data from multiple sources.

An example datahub.

```
[  
  {  
    "type": "bedgraph",  
    "url": "http://vizhub.wustl.edu/hubSample/hg19/GSM432686.gz",  
    "name": "my track",  
    "showOnHubLoad": true,  
    "options": {  
      "color": "#ff33cc",  
      "height": 50  
    }  
  }  
]
```

Highlights:

1. Batch uploading of many tracks at the same time.
2. Custom track information is preserved in a datahub.
3. Tracks in a datahub can come from different servers.
4. Track rendering style can be customized.
5. Tracks can be annotated with metadata.

A datahub is written in **JSON** text.

Use the Tracks -> Custom Tracks menu to upload a datahub to the browser.

A datahub file can be either hosted on the Web or saved locally.

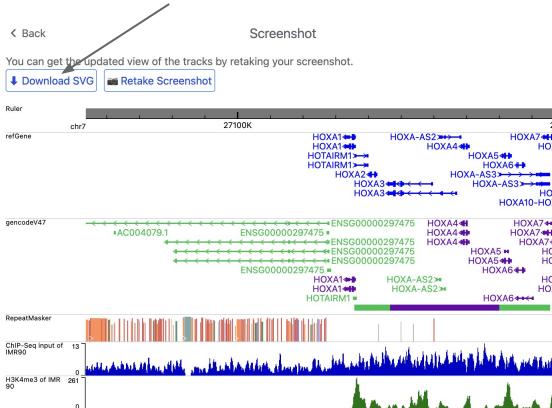
If the datahub is hosted on the Web, it can be referenced by the browser through the URL parameter. In this way you can bookmark the parameterized browser link for quick reference or sharing.

<http://epigenomegateway.wustl.edu/browser/?genome=hg19&hub=https://vizhub.wustl.edu/hg19/hubsample.json>

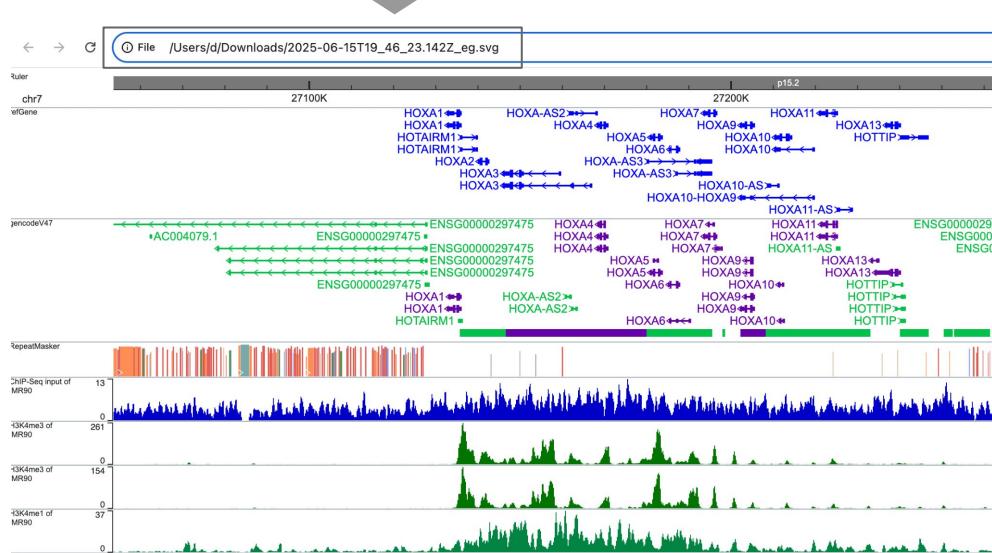
Dissecting the browser URL parameters.

browser URL	?genome=	genome identifier	&hub=	datahub URL
-------------	----------	-------------------	-------	-------------

Data Management: Screenshot


Tracks Apps Share Settings Help

Apps


- Region Set View >
- Gene Plot >
- Scatter Plot >
- Session >
- Screenshot >

Use the **Screenshot** app in the Apps menu to save images of the current genomic view.

Click the “Download SVG” button to save the screenshot as an SVG file to your computer.

The “Screenshot” app will convert the browser contents to an SVG file. The SVG file is a high-quality vector-based graphics file.

Tracks Apps Share Settings Help

Apps

Region Set View >

Gene Plot >

Scatter Plot >

Session >

Manage and share your browser sessions

Screenshot >

Capture and export browser views as images

Use the **Session** app in the Apps menu to save the current browser status including tracks, view range, and customization, for later viewing.

To save a session, click the “Save” button. Enter a name for this session (optional). The user can download their session as a JSON file.

Session bundle Id

Session bundle Id

Retrieve

Or use a session file:

Upload

Session bundle Id: b1d351bf-cfcf-4a3a-9b31-50b74fa3a711 [Copy](#)

Name your session

Silly-chartreuse-caterpillar

or use a [Random name](#)

 Save session

 Download current session

 Download as datahub

 Download whole bundle

Sort session by: Date Label

Great-tangerine-opossum (6/15/2025, 2:55:52 PM)

[Restored](#)

[Delete](#)

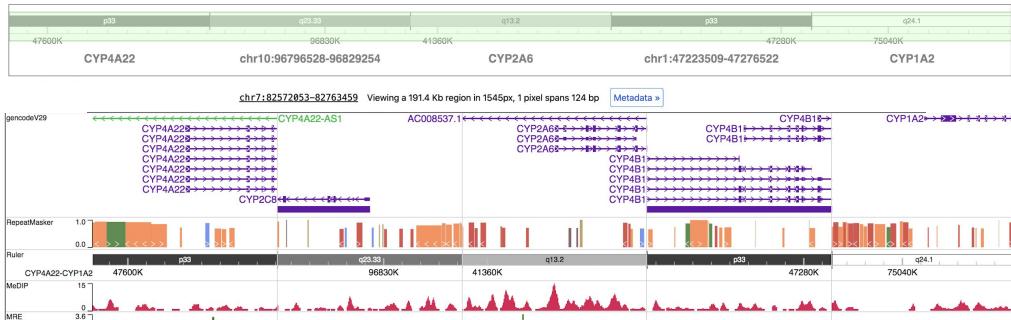
Fabulous-aquamarine-rabbit (6/15/2025, 2:55:38 PM)

[Restore](#)

[Delete](#)

Multiple sessions can be saved under one bundle ID.

Disclaimer: please use **sessionFile** or **hub** URL for publishing using the Browser. Session id is supposed to be shared with trusted people only. Please check our docs for [Publish with the browser](#). Thank you!


A session can be recovered in three ways:

1. Use the “?bundle=session_bundle_id” URL parameter to reload the session.
2. Upload a saved JSON file by clicking the “Upload” button in the “Sessions” app.
3. Copy the session ID and paste this into the “Retrieve” box in the “Sessions” app.

Sessions and datahubs only record information about tracks; they do not save actual track data. If the track file has been moved, the browser won't be able to recover that track from the session or datahub.

Apps: Region Set View

Use the **Region Set View** app to show track data over a set of genes or regions. The “Region Set View” app enables track data to be displayed over regions that are not adjacent on a chromosome or even on different chromosomes.

The user can create many sets of genes or regions of interest by clicking the “Add new set” button.

Gene and region sets can be submitted by pasting a list of gene names or genomic coordinates. Gene names and coordinates can be mixed for input. Coordinate string must be in the form of "chr1:345-678" and fields can be joined by space/tab/comma/colon/hyphen.

1. Rename this set:

2. Add one region or delete region(s) from the table below

New region name: New region locus: Add new region

Name	Locus	Strand	Coordinates to view	
CYP4A22	chr1:47603096-47614526	+	chr1:47603096-47614526	Delete
chr10:96796528-96829254	chr10:96796528-96829254	-	chr10:96796528-96829254	Delete
CYP2A6	chr19:41349442-41356352	-	chr19:41349442-41356352	Delete
chr1:47223509-47276522	chr1:47223509-47276522	-	chr1:47223509-47276522	Delete
CYP1A2	chr15:75041185-75048948	+	chr15:75041185-75048948	Delete

The user can specify custom flanking regions surrounding the gene transcriptional start sites to focus on the gene promoters.

3. Set flanking region

Upstream bases: 5000 Downstream bases: 5000 Surrounding: Transcription start

“Region set view” can be applied to see all regions in one browser view. To quit the gene set view, click the yellow button:

Select a gene/region set

New set (5 regions)

Enter region set view

DFI FTF

Exit region set view

Apps: Gene Plot

Use the **Gene plot** app to explore the data variation and distribution of a numerical track with respect to a group of genes or regions of interest. The gene set needs to be loaded using the “Region View Set” app before using the “Gene plot” app.

1. Choose a region set

Choose a gene set.

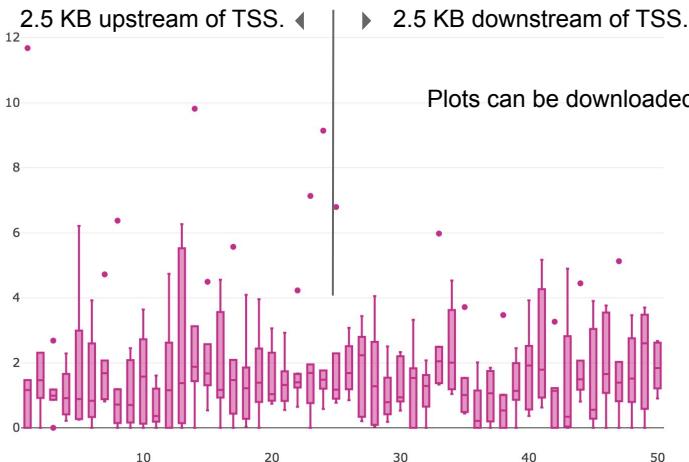
Pick your set:

2. Choose a **numerical track**:

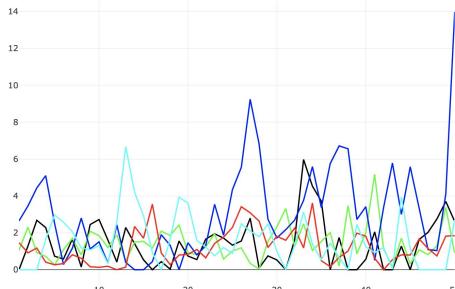
Select the data to be plotted.

Pick your track:

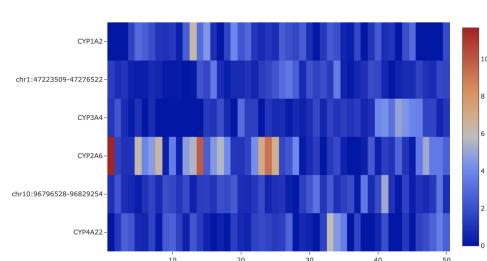
3. Choose a plot type:


Three plots (box plot, line plot, and heatmap) are available, and each is fully customizable.

Pick your plot type: data points:


All genes and genomic intervals are tiled together, genes are plotted.

Plot


Gene transcription start sites.

The above boxplot shows the bone marrow MeDIP signal distribution over 5 KB regions centered on the transcription start site of 5 human genes. Data from each region is evenly summarized into 50 data points and a boxplot is shown over each summary point to indicate the data distribution.

Individual curves for each item

Heatmap

Tracks Apps Share Settings Help

Apps

Region Set View
View and analyze sets of genomic regions

Gene Plot
Create and customize gene-centric visualizations

Scatter Plot
Generate scatter plots for genomic data analysis

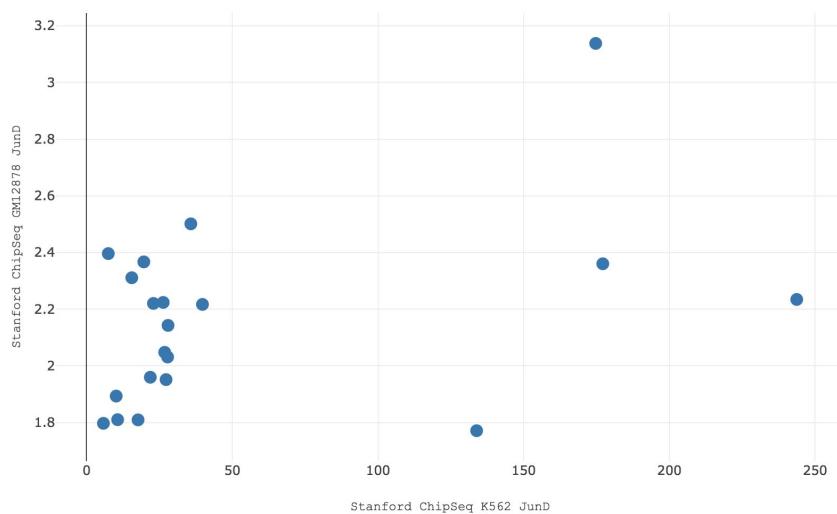
Session
Manage and share your browser sessions

Screenshot
Capture and export browser views as images

This App allows the user to compare different datasets, across multiple genomic regions.

1. Choose a region set

Pick your set: **20TEs-ext2.5Kb**


2. Choose a **numerical track** for X-axis:

Pick your track: **Stanford ChipSeq K562 JunD**

3. Choose a numerical track for Y-axis:

Pick your track: **Stanford ChipSeq GM12878 JunD**

Plot

Apps: Fetch Sequence

Apps

Region Set View

View and analyze sets of genomic regions

Gene Plot

Create and customize gene-centric visualizations

Scatter Plot

Generate scatter plots for genomic data analysis

Session

Manage and share your browser sessions

Screenshot

Capture and export browser views as images

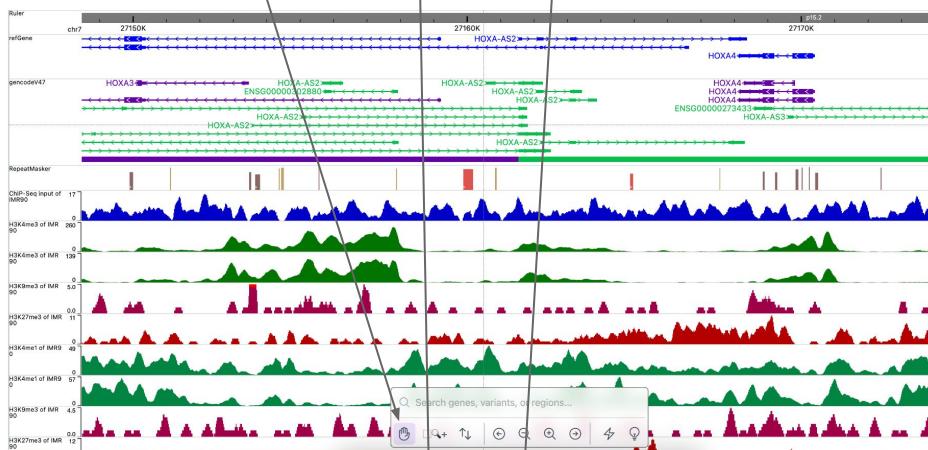
Fetch Sequence

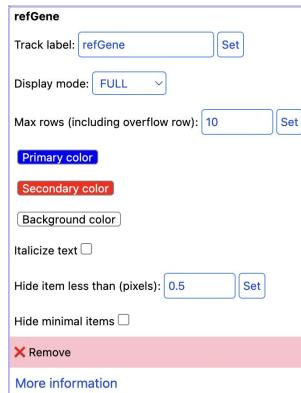
Retrieve and analyze genomic sequences

Click the **Fetch** or **Batch fetch** button to fetch the sequence. Click the **Copy** button to copy the fetched sequence to your clipboard.

or input a list of coordinates to fetch sequence (max 100 regions, each should less than 10KB, regions longer than 10Kb would be ignored):

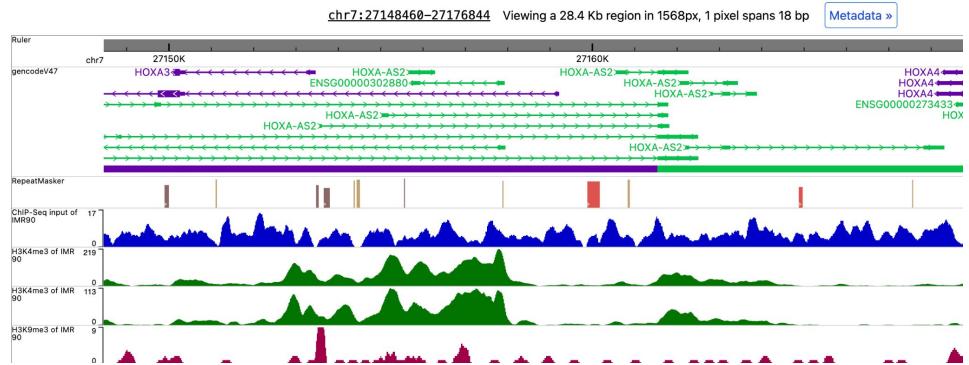
chr6:52425276-52425961
chr1:10001000-10001400

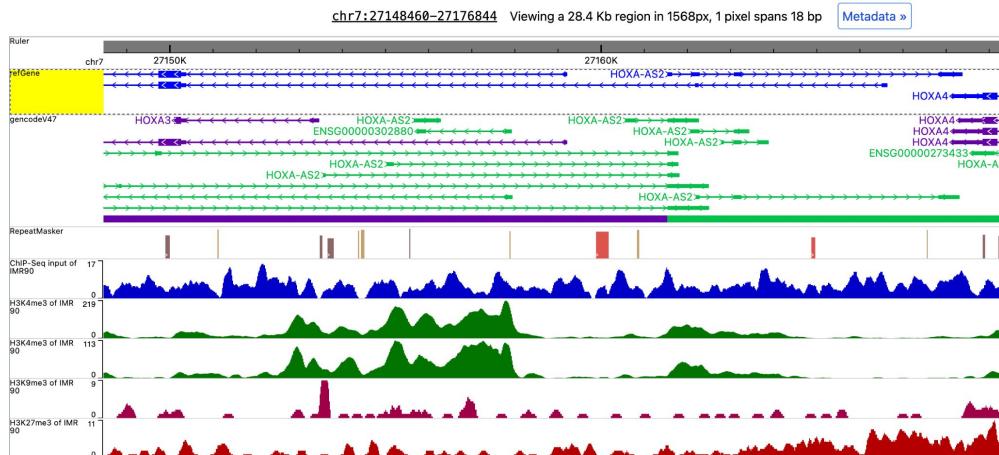

Batch fetch Reset Copy



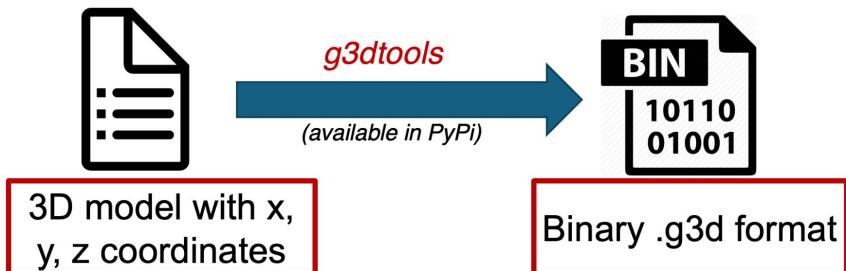
Drag

Zoom in


Re-order

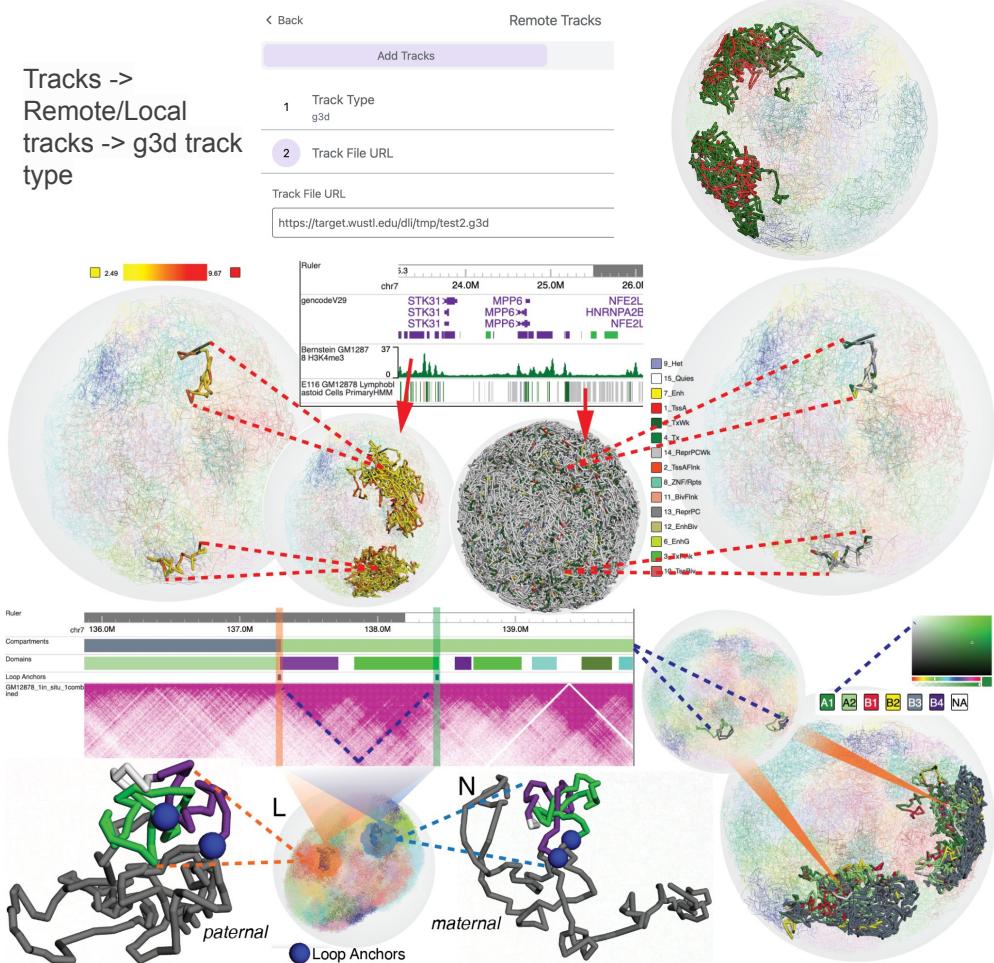


The figure on the left shows how to remove the refGene track from the current view.


The view below is after the refGene track has been removed.

When we click the Undo button, the refGene track is added back.

g3d: indexed binary format for fast retrieval of 3D data


Supports:

1. remote range request
2. metadata, different resolutions
3. Haplotypes, cells, samples etc.
4. Python and JavaScript API
5. ...

Can parse:

1. bed-like x, y, z
2. pastis output (Noble lab)
3. nucle3d format (Ma lab)
4. 3dg output from Dip-C/hickit
5. ...

Tracks ->
Remote/Local
tracks -> g3d track
type

 WashU Epigenome Browser 55.0.3

< Back Add Custom Genome

+ View Schema [Download Example](#)

Drag and drop a .json genome file here

- or -

Click to select a file

Root object

No additional properties allowed

id * string ⓘ

name * string ⓘ

group string ⓘ

> **chromosomes** * array ⓘ

> **cytobands** object ⓘ

 No additional properties allowed

defaultRegion * string ⓘ

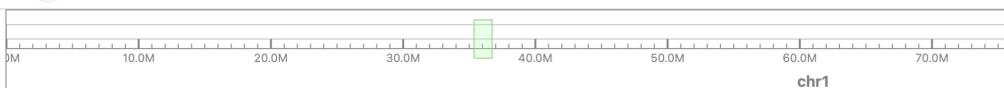
> **defaultTracks** array ⓘ

> **publicHubList** array ⓘ

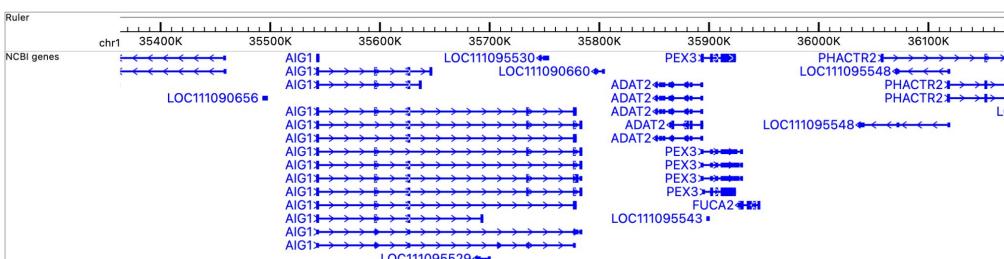
publicHubData object ⓘ

> **annotationTracks** object ⓘ

twoBitURL string ⓘ


```
{
  "name": "canFam6",
  "id": "32a1dfb2-9b61-4879-b6bb-588686854ce9",
  "group": "Dog",
  "cytobands": {},
  "defaultRegion": "chr7:26733027-26803027",
  "chromosomes": [ ... ],
  "annotationTracks": { ... },
  "defaultTracks": [
    {
      "name": "Ruler",
      "type": "ruler"
    },
    {
      "type": "geneAnnotation",
      "name": "ncbiRefSeq",
      "label": "NCBI genes",
      "filetype": "geneAnnotation"
    }
  ]
}
```

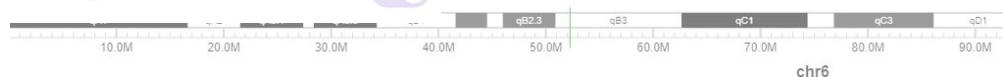
"chromosomes": [


 {
 "name": "chr1",

 "length": 122014068
 },
 },
],
 "annotationTracks": { ... },
 "defaultTracks": [
 {
 "name": "Ruler",
 "type": "ruler"
 },
 {
 "type": "geneAnnotation",
 "name": "ncbiRefSeq",
 "label": "NCBI genes",
 "filetype": "geneAnnotation"
 }
]
}

 canFam6 / Untitled Session 55.0.3

chr1:35363186-36729385 Viewing a 1.4 Mb region in 1568px, 1 pixel spans 871 bp


Toggle display of the Genome Navigator

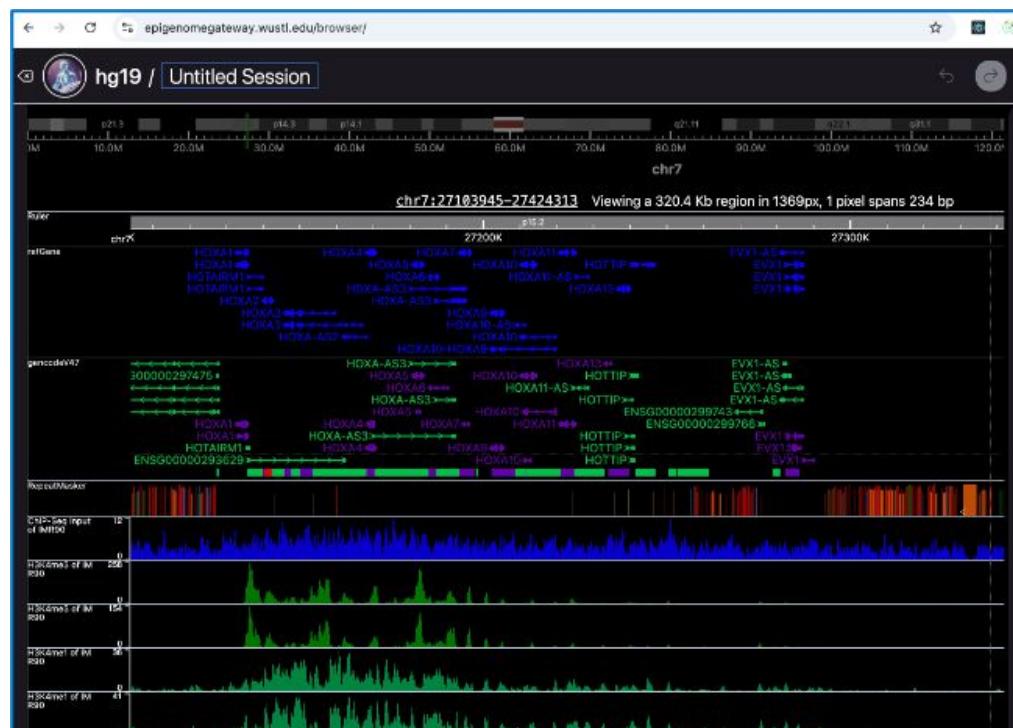
Tracks Apps Share Settings Help

- Left mouse drag: select
- Right mouse drag: pan
- Mousewheel: zoom

Settings

Show Navigator

Toggle Dark Mode


Tracks Apps Share Settings Help

Settings

Show Navigator

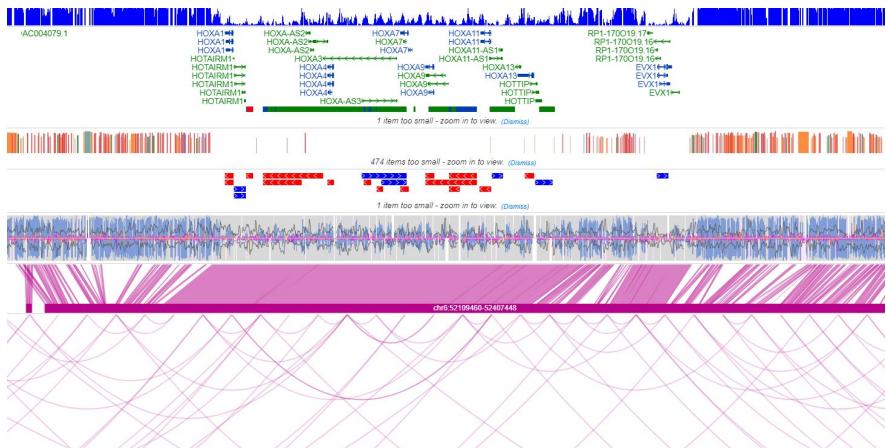
Dark Mode

an example view with
dark mode enabled


```
yarn add wuepgg
```

```
import { GenomeViewer } from "wuepgg";
```

```
<GenomeViewer
  viewRegion="chr7:27181545-27245617"
  tracks={[
    {
      url: "https://hicfiles.s3.amazonaws.com/hiseq/gm12878/in-situ/combined.hic",
      name: "hictest",
      type: "hic",
    },
    {
      url: "https://vizhub.wustl.edu/hubSample/hg19/bam1.bam",
      name: "bamtest",
      type: "bam",
    },
    {
      name: "gencodeV47",
      type: "geneannotation",
    },
  ]}
  genomeName="hg19"
/>
```



Code

WashU Epigenome Browser embedding code boilerplate:
<https://github.com/twlab/embed-eg3>

Notes

Notes

Everything can be found at
epigenomegateway.wustl.edu

REFERENCES

1. Seng C, et al., Nucleic Acids Research gkaf387 (2025)
2. Li D, et al., Nature Methods 19, 909–910 (2022)
3. Li D, et al., Nucleic Acids Research 50, W774–W781 (2022)
4. Li D, et al., Nucleic Acids Research 47, W158–W165 (2019)
5. Zhou X, et al., Nature Methods 8, 989–990 (2011)
6. Zhou X, et al., Nature Methods 10, 375–376 (2013)
7. Zhou X, et al., Bioinformatics 30, 2206–2207 (2014)
8. Zhou X, et al., Nature Biotechnology 33, 345–346 (2015)

FUNDING

NIH 5U01ES017154, NIH R01ES024992, NIH R01HG007175, NIH R01HG007354, NIDA DA027995, NIH U01CA200060, NIH U24ES026699, NIH U01HG009391. ACS RSG-14-049-01-DMC

LATEST DEVELOPMENT

Documentation: epqq.github.io

GitHub: <https://github.com/twlab/eq3>

Twitter: @wuepgq

WeChat: (find latest QR code through GitHub issues)

SUPPORT

epigenomegateway.wustl.edu/support/

CONTACT US | Lab: wang.wustl.edu

ACKNOWLEDGEMENTS

Fudan International Summer School of Life Sciences

Authors: Daofeng Li, Shane Liu, Chad Seng, Ting Wang

Cover art: Ting Wang

Copyright © WashU Epigenome Browser 2025

HumPOG

WANG LAB
<https://wang.wustl.edu>